
Specifying Sequent Calculi Rules for
Managing Some Redundancies in Proof Search

Lutovac A. Tatjana

Abstract − A central aspect of proof search is
the identification and control over various forms of
redundancies in the search space. We investigate
systematic techniques for managing some redun-
dancies in proof search in sequent calculi. This
paper is a summary of some results of our in-
vestigation. In particular we have enriched infer-
ence rules with some additional information about
status the search in order to preclude some re-
dundant or useless choices which would otherwise
be allowed in the standard sequent system. We
have developed a method for detection of redun-
dant and eliminable formulae from a given sequent
proof and an algorithm for ensuring termination
ie. for eliminating (infinite) loops during a back-
ward sequent calculi proof search.

Key words: affine logic, backward proof search,

linear logic, loops, redundant formulae, sequent

calculus

1. Introduction

It is well known that logic programming may be
thought of as the application of the techniques of
mathematical logic to programming tasks. Logic
programs may be considered as collections of for-
mulas and their computation may be identified as
searching for proofs: given a program P and a goal
G we attempt to satisfy G by searching for a proof
of P → G using the inference rules of a given logic.

Proof search is the name given to the study of
the construction, if possible, of proofs of a given
logical assertion. In systems known as sequent cal-
culi logical assertions are presented in the form of
sequents.
A sequent is a pair denoted by Γ ` ∆, where
both the antecedent Γ and the succedent ∆ are
sequences of formulae. The intuitive meaning of
Γ ` ∆ is: if all of the formulae in Γ are true, then
at least one formula in ∆ is true.

Manuscript received December, 11, 2006.

Author is with Department of Applied Mathematics, Faculty

of Electrical Engineering, University of Belgrade, Belgrade,

Serbia (e-mail: tlutovac@eunet.yu).

A sequent calculus system gives a set of
rules for manipulating sequents, in the
form of set of sequent rules. Sequent cal-
culus rules generally are written as follows.
sequent1, sequent2, . . . sequentk

sequent
rule-name k = 0, 1, ...

The sequents above the line in a rule are called
premises of the rule and the sequent below the line
is called the conclusion.

A proof of a sequent Γ ` ∆ is a tree whose nodes
are labelled with sequents such that the root node
is labelled with Γ ` ∆ (which is then called the
end-sequent), the internal nodes are instances of
one of the inference rules, and the leaf nodes are
labelled with axioms.

A sequent Γ ` ∆ is provable in the sequent cal-
culus formalization of a logic (or logical fragment)
if there is a proof with Γ ` ∆ as the end- sequent.

Bottom-up ie. backwards proof search con-
sists of building the proof from the given end-
sequent. The end-sequent is reduced by reversed
(conclusion-to-premise) application of a sequent
calculus rule to produce subgoal branches.

The theory of the exploration of the search space
generated by inference rules used in this way is sub-
ject of proof search . A number of computational
difficulties arise in designing algorithms for proof
search . Prominent among these is the need, in or-
der to minimize complexity, to control and/or elim-
inate as much redundancy from the search space as
possible.

There have been a variety of proof-theoretic
techniques used to analyze and design strategies
for efficient sequent calculi proof search in theo-
rem proving and logic programming [13, 16, 15]. It
is notable that many of the existing strategies are
all rather sophisticated and involve complex manip-
ulations of proofs. Many are restricted to particular
logic or classes of formulae. Almost all are designed
for analysis on paper by a human and many of them
are ripe for automation, being formally defined in

15

precise detail, and yet somewhat overwhelming for
humans.

We investigate systematic and automated-
oriented techniques for managing some forms of re-
dundancies in proof search in sequent calculi. This
paper is a summary of some results, being devel-
oped, presented and formally proved in [7]1, on the
development of systematic techniques:
- for detection of redundant and eliminable formu-
lae from a given sequent proof and
- for ensuring termination ie. eliminating infinite
loops during a backward proof search.

Our solutions are based on the widely used prac-
tice of including in the representation of the se-
quents some additional information about the sta-
tus of the search.

Our work on detection of redundant parts of se-
quent proof is motivated by the fact that none of
the existing algorithms for efficient implementation
of proof search (in linear logic, at least) can distin-
guish redundant formulae that can be freely, uncon-
ditionally eliminated from the proof from those re-
dundant formulae whose elimination lead to an in-
valid proof, as far as we are aware. Our mechanism
makes such a distinction. Furthermore it allows se-
lection in a sense that a redundant (sub)formula
can be either eliminated or replaced by an arbitrary
formula. This induces a class of equivalent formulae
(in terms of provability) and a class of equivalent
proofs modulo the redundant parts. This allows, for
example, more flexible reuse of previously success-
ful searches and is potentially useful for implemen-
tations.

There have been a variety of systems for pre-
venting and detecting infinite loops during proof
search. Surprisingly, no loop detection mechanism
has been developed or described in the literature
(as far as we are aware) for resource sensitive
logic (such as, for example, linear and affine logic).
We have developed a (terminating) sequent cal-
culi with loop-detection mechanism for intuition-
istic, propositional2 affine logic. We have followed
the overall approach of [3] and [4], i.e., to incorpo-
rate the loop-detection mechanism into the sequent
rules. The proposed conditions are independent of
the search strategy used and no explicit loop check-
ing is needed in the interpreter.

1 Parts of this material are presented in [8, 9].
2 Quantifier free.

Given the evolution of programming languages
towards higher and higher level languages, with a
corresponding increase in the computational power
of the execution models of these languages, a nat-
ural demand is a wide range of expressive logics
and more powerful inference facilities in which to
write programs. That is why our starting point
is propositional linear logic and affine logic. Lin-
ear logic is a refinement of classical logic, in
that there is a fragment of linear logic which has
precisely the same properties as classical logic;
at the same time however, linear logic contains
features which are not present in classical logic.
In essence, these features are due to removing
the rules for contraction and weakening and re-
introducing them in a controlled manner. It is sim-
pler and more natural to express certain resource
management problems in linear logic than in clas-
sical logic. For example, the property of having two
dollars we may represent by the LL conjunction
$1 ⊗ $1. In classical logic, this would be repre-
sented by $1 ∧ $1, which is equivalent to $1, ie.
that having two dollars is equivalent to one dollar,
which is clearly nonesential. However, in linear logic
$1 ⊗ $1 and $1 are not equivalent, which is more
appropriate. For this reason linear logic is often de-
scribed as a logic of resources rather than logic
of truth (such as classical logic) in that different
amounts of the same thing are considered to be
different.

We are interested in affine logic because of its
relationship to logic programming. Due to the pres-
ence of the weakening rules3, there are many prob-
lems where affine logic is better suited than linear
logic. Propositional affine logic [5] is decidable4 ,
and so it seems reasonable to expect a complete
proof search procedure with a loop detection mech-
anism.

This paper is organized as follows. In Section 2
we briefly explain our mechanism for detection and
elimination of redundant formulae in sequent proof.

3 While proofs in linear logic must use each linear for-
mula exactly once, proof derivations in affine logic use
each affine formula at most once.

4 Let us recall that a logical system is decidable iff there
exists an algorithm such that for every well-formed for-
mula in that system there exists a maximum finite
number N of steps such that the algorithm is capa-
ble of deciding in less than or equal to N algorithmic
steps whether the formula is (semantically) valid or not
valid.

16

In Section 3 we illustrate our solution for preven-
tion of infinite loops in propositional affine logic. In
Section 4 we present our conclusions.

2. Redundant formulae in sequent proofs

Proof search often involves managing informa-
tion which later, when the proof is completed, turns
out to be redundant. For example, the sequent
p, q ` p, r, s is provable in classical (and affine)
logic. However q, r and s are redundant, and the
“core” provable sequent is p ` p. More complex
examples involve choosing between subformulae.
Example 1. Consider the (linear logic) proof Π
below:

Π :

t ` t
Ax

r ` r
Ax

r `?p, r
?wR

r ` ?q, ?p, r
?wR

r ` ?q℘?p, r
℘R

r ` (?q℘?p)⊕ s, r
⊕R

r, t ` t⊗ ((?q℘?p)⊕ s), r
⊗R

?
r, t ` t, r

What is the core of this proof ie. what is the min-
imal set of formulae which guaranties success of
the proof? The (sub)formulae p, q and s are
unused, but only s can be freely deleted from the
proof while formulae p and q cannot be simul-
taneously eliminated. Elimination of the whole for-
mula (?q℘?p)⊕ s will disable proof branching ie.
distribution of formulae across the multiplicative
branches of the proof. Elimination of the subfor-
mula ?q℘?p will also lead to the unprovable se-
quent (on the right-hand side above). So, we have
that p, q and s are unused and that p and q can-
not be simultaneously eliminated from the proof.
For each unused atom we have three possibilities:
to omit it from the proof; to leave the atom un-
changed or to replace it with an arbitrary formula.
So proof Π can be thought of as a template for
(32−1) ·3 proofs (ie. some variations of the given
proof) which can be generated by alterations of
p, q and s. All that proofs do not alter the search
strategy used, in that the order of application of
the rules is not changed.

This knowledge allows later computations to
make use of earlier work. So a proof search strat-
egy can retain the results of a previous success-
ful search and to apply and combine them to a
new situation. The knowledge about redundant and
eliminable formulae can be potentially useful when
composing programs (and hence proofs), for de-
bugging, and for teaching purposes.

2.1 Our technique for detection of
redundant formulae

In Chapter 4 of [7] we have proposed a mecha-
nism for distinguishing between the necessary and
unnecessary formulae in a linear logic proof. We
have enriched the standard sequent structure with
labels and Boolean constraints as follows:
φ1,[v1], φ2,[v2], . . . φn,[vn] ` ψ1,[w1], ψ2,[w2], . . . ψm,[wm]−C
where C is a set of constraints being generated so
far on the branch of a proof tree by application of
the particular rules and labels [v1], . . . , [w1], . . . [wm]

trace formulae duplicated by the contraction rules.
Labels and constraints allow us to store the neces-
sary information about the usage of formulae in a
proof.

We have defined a labelled sequent calculus,
called LLPRE , for elimination of redundant for-
mulae in propositional linear logic. LLPRE sequent
calculi is defined as shown in Figure 4.1, Chapter
4 of [7]. Examples of some LLPRE rules and the
corresponding constraints are given below.

− C ∪ {p > 0}
p ` p − C

Ax

Γ ` ψ[w], ∆ − C ∪ {φ[w] ≤ ψ[w]}

Γ ` (φ⊕ ψ)[w], ∆ − C
⊕R

Γ ` φ[w], ∆ − C ∪ {φ[w] > 0} Γ
′

` ψ[w], ∆
′

− C ∪ {ψ[w] > 0}

Γ, Γ
′

` (φ⊗ ψ)[w], ∆,∆
′

− C
⊗R

We begin with the empty labels (denoted as [])
on each formula of the end-sequent and with the
empty set C. The labels and constraints gener-
ated and accumulated during a proof construction
(in the labelled system LLPRE) place some restric-
tions on the elimination of the corresponding for-
mulae. For example, the intuition underlying the
constraint φ[w] ≤ ψ[w] is that elimination of for-
mula ψ[w] is a necessary condition for elimination
of formula φ[w]. The intuition underlying the con-
straint φ[w] > 0 is that formula φ[w] cannot be
entirely eliminated.

A labelled proof tree (generated by the LLPRE

sequent rules) is forwarded to the main algorithm,
called algorithm PRE, being defined as follows.

Algorithm PRE (input: labelled proof π)

1. Generate Boolean expressions and constraints on
Boolean expressions;

2. Calculate possible assignments for Boolean variables;

3. If there is an assignment with at least one Boolean
variable being assigned the value 0 then:

Delete atoms being assigned 0 ie. delete formu-
lae made up of such atoms and the corresponding
inferences

Else EXIT: ’Simplification of proof π is not possible’

17

Algorithm PRE has to interpret the set of accu-
mulated constraints via the set of Boolean con-
straints and to find an assignment for Boolean
variables. Intuitively, we associate each atom in
a proof π with a Boolean variable. Atoms asso-
ciated with Boolean variables annotated to 0 and
the (sub)formulae made up of such atoms can be
safely eliminated (ie. deleted) from the proof π.

For example for the proof Π from Example 1,
we will have the labelling as follows.

Π1

− {(?q℘?p) ⊕ s > 0, s ≤ ?q℘?p, r = 1, r1 = 1}

r ` r1 − {(?q℘?p) ⊕ s > 0, s ≤ ?q℘?p}
Ax

r `?p, r1 − {(?q℘?p) ⊕ s > 0, s ≤ ?q℘?p}
w?R

r ` ?q, ?p, r1 − {(?q℘?p) ⊕ s > 0, s ≤ ?q℘?p}
w?R

r ` ?q℘?p, r1 − {(?q℘?p) ⊕ s > 0, s ≤ ?q℘?p}
℘R

r ` (?q℘?p) ⊕ s, r1 − {(?q℘?p) ⊕ s > 0}
⊕R

r[], t[] ` (t1 ⊗ ((?q℘?p) ⊕ s))[], r1,[] − ∅
⊗R

where the subproof Π1 is as follows.
− {t = 1, t1 = 1, t1 > 0}

t ` t1 − {t1 > 0} Ax.
For the proofΠ Algorithm PRE will extract the fol-
lowing Boolean constraints: q+ p+ s > 0, s ≤ q+ p,
r1 = 1, r = 1, t1 = 1, t = 1. Possible solu-
tions for the (unassigned) Boolean variables are:
(p, q, s) ∈ { (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 0), (1, 0, 1) }.
Hence, there are five possible simplifications of
proof Π. Below we illustrate one of them:

(p, q, s) = (0, 1, 0) 7→ t ` t1
Ax

r ` r1
Ax

r ` ?q, r1
?wR

r, t ` t1⊗?q, r1
⊗R

As we already pointed out none of the exist-
ing algorithms for efficient implementation of proof
search (in linear logic, at least) is able to make the
distinction between unused formulae that can be
freely eliminated from the proof from those unused
formulae whose elimination will cause a ’crash’.
Our labelled system makes such a distinction. Fur-
thermore it allows selection in a sense that a re-
dundant (sub)formula can be either eliminated or
replaced by an arbitrary formula. Thus, we can get
a class of equivalent formulae (in terms of prov-
ability) and a class of equivalent proofs modulo
the redundant parts. This allows, for example, more
flexible reuse of previously successful searches and
is potentially useful for implementations.

Our intention was not to find all different proofs
of a given sequent but to generate all the con-
crete simplifications which are instances of a gen-
erated proof. Our solution for detection of redun-
dant, eliminable formulae implies elimination which

is independent of the search strategy used; elimi-
nation which does not alter the search strategy ap-
plied and does not require additional proof search
ie. redundant formulae remaining in the result-
ing proof cannot be eliminated without additional
proof search. Soundness and completeness of our
solution are proved formally in Chapter 4 of [7].

3. Detection and prevention of infinite loops
during proof search

It is well known that for many logics, backward
proof search in the usual sequent calculi generally
does not terminate in general, in the sense of Dy-
ckhoff[1]: ’By ”terminating” we mean just that ev-
ery sequence of steps, in a backward proof search,
is finite.’ This makes loop detection, where possi-
ble, a critical aspect of systems based on backward
proof search. For example, consider the (unprov-
able) linear sequents !(p−◦ q), !(q−◦ p) ` q and
!((r−◦ p)−◦ p), r ` p , and the following attempts
for proof construction:

.

.

.

.
P ` q p ` p

Ax

P, q−◦ p ` p
−◦L

P, !(q−◦ p) ` p
!L

P ` p
!C

q ` q
Ax

P, p−◦ q ` q
−◦L

P, !(p−◦ q) ` q
!L

!(p−◦ q), !(q−◦ p)︸ ︷︷ ︸
P

` q
!C

.

.

.
P1, r, r ` p

P1, r ` r−◦ p
−◦R

p ` p
Ax

P1, r, (r−◦ p) −◦ p ` p
−◦L

!((r−◦ p) −◦ p)︸ ︷︷ ︸
P1

, r ` p
!C, !L

The sequent P ` q may continue to occur in the
left-hand proof construction. The (sub)formula r

may continue to occur in the antecedents during
the right-hand proof construction. Note that this is
due to the deterministic nature of the proof search
process; as in many logic programming languages,
the selection of a formula from the antecedent is
determined largely by the formula position, and so
an interpreter will always handle variants of a given
antecedent and a given succedent in exactly the
same way (up to renaming variables). Thus far,
there is no satisfactory solution to this problem.

There have been a variety of systems [3], [4],
[1] for preventing and detecting loops during proof
construction. Due to the lack of non-decreasing
number of formulae in antecedents, the existing
techniques are not directly applicable for resource
sensitive logic (such as, for example, linear and
affine logic). No loop detection mechanism (apart
from a naive history mechanism) has been de-
veloped for resource sensitive logic. Naive history

18

mechanism implies unintelligent searching through
the history ie. through is the list of all sequents
that have appeared so far on the branch of a search
tree. At every step of a proof construction the lat-
est generated sequent is checked to see whether it
is a member of the history list. If so, a loop has
been generated and so the search backtracks. If
not, the history is extended with the sequent and
the proof search continues. Implementation of this
scheme is clearly inefficient as it requires a great
deal of information to be stored. It is important
to note that situation illustrated by the right-hand
derivation above cannot be detected and solved by
the naive history mechanism.

We have identified two reasons for non-
termination in propositional linear and affine logic:
simple loops (ie. appearance of identical sequents
in the same branch of a proof tree, as illustrated
by the left-hand derivation above) and special loops
(ie. an infinite repetition of a particular formula,
as illustrated by the right-hand derivation above).
Our strategy for detecting and preventing loops is
twofold. First, we add a simple history list to se-
quents to allow detection of simple loops, and then
introduce machinery that, essentially, turns infinite
special loops into simple loops. The idea behind the
treatment of special loops is not to make the rule
(or sequence of rules) ’responsible’ for the special
loop inapplicable. The idea is to identify a spe-
cial loop, and to continue and complete the proof
search bearing in mind that some formulae (origi-
nated from that special loop) can be used as many
times as needed (such as, for example, the formula
r in the right-hand example above).

We have proposed sequent calculi rules with
zones and side conditions (denoted PIAHist−

ff) for
propositional affine logic, as shown in Section 5.7
of [7]. Example of a PIAHist−

ff rule is given below.
Γ ; Υ, U; ∆− U ` χ1 I f ; H1 ; h1

Γ ; Υ ; ∆ ` χ I f ; H ; h
⊕R

⇐=
=⇒

TEST(Υ ; f ;H; h; ∆; χ1;U;H1; h1)

We have divided the antecedent into zones to
isolate and control the non-decreasing part of an-
tecedent ie. to assemble all formulae originated
from special loops into a new zone (called ∗context
zone) of antecedents. This allows to cut down the
amount of storage and checking in the history list.
We have extended the sequent rules with the set
of side conditions (denoted as procedure TEST).
Procedure TEST has to maintain history list, and

detect and control simple and special loops. If the
latest generated sequent is a member of the his-
tory list, procedure TEST make the rule inappli-
cable (ie. forces the system to backtrack). In the
case of special loop, procedure TEST classify all
formulae originated from recognized special loop
into ∗context zone. As search proceeds, the unre-
stricted resources of every identified special loop
will be classified into the ∗context. Thus, example
of the special loop, shown on the right-hand side at
the beginning of this section, would be interpreted
in the PIAHist−

ff calculi as shown on the left side
below.

P1 ; r ;︷ ︸︸ ︷
P1 ; ; r, r ` p

P1 ; ; r ` r−◦ p
−◦R

P1 ; ; p ` p
Ax

P1 ; ; r, (r−◦ p) −◦ p ` p
−◦L

P1 ; ︸ ︷︷ ︸
∗ context zone

; r ` p
!C, !L

P1 ; r ; ` p
.
.
.
.

P1 ; r ; ` p
.
.
.
.

P1 ; ; r ` p

Formula r (being classified in the ∗context) can
be further used as many times as needed. An at-
tempt to reiterate the above derivation will cause
detection of simple loop (as shown on the right side
above). Detection of a simple loop makes the last
applied inference rule inapplicable ie. forces the
system to backtrack to the most recent decision
point and to try to find alternative solution(s). We
get failure ie. the sequent at the root of the proof
tree is not provable if at any point no rule instance
can be applied.

Soundness and completeness of the PIAHist−
ff

sequent calculi system as well as the fact that back-
ward proof search in this calculus will always ter-
minate, are proved formally in Chapter 5 of [7].

Providing a terminating procedure for a proposi-
tional affine logic could be very useful in the de-
sign of tabling mechanisms for linear logic. An-
other natural extension of this work is to apply
the ideas behind the PIAHist−

ff sequent calculi to
(fragments of) linear logic. The well-known prob-
lem concerning an implementation of logic pro-
gramming language Forum [11] is connected with
the special loops originating from ⊥−headed impli-
cations. Thus far, there is no satisfactory solution
this problem. It is our contention that the ideas be-
hind the PIAHist−

ff loop detection mechanism can
be used to establish control over the ’⊥−headed
special loops’ in Forum.

19

4. Conclusion

Managing redundancies in sequent calculus proof
search is nontrivial. We have briefly presented some
mechanisms, being formally defined, developed and
proved in [7], for identification and control over
different forms of redundancies in sequent calculi
proof search . The proposed solutions may con-
tribute to automation of proof search by, for ex-
ample, fine tuning the search to find one “good”
representative of a class of proofs (such as, for ex-
ample, a class of equivalent proofs modulo redun-
dant formulae).

Our technique for elimination of redundant for-
mulae is limited to sequent proofs and thereby dif-
fers from dead-code elimination in functional lan-
guages. Developing more general techniques for
program slicing and dead-code elimination in ad-
vanced logic programming languages are items of
future work.

We have developed first terminating sequent sys-
tem for (a fragment) of propositional affine logic.
The perspective to apply the ideas for managing
loops in the logic programming language Forum
also emphasizes the interest of the results. A nat-
ural extension of this work is to apply the ideas
behind the PIAHist−

ff sequent calculi to various
(fragments of) other resource-sensitive logics.

Our work is intended as a contribution to a li-
brary of automatic support tools for managing re-
dundancies in sequent calculi proof search. The
proposed strategies and techniques can be imple-
mented and utilized by means of an automated
proof assistant such as Twelf [14], possibly in con-
junction with constraint logic programming tech-
niques [10].

References
1. Dyckhoff R, ” Contraction-free Sequent Calculi for In-

tuitionistic Logic”, The Journal of Symbolic Logic, Vol.
57, No. 3, 1992, pp. 795-807.

2. Harland J, Pym D., ” Resource-distribution via Boolean
constraints”, ACM Transactions on Computational
Logic 4:1, 2003, pp. 56-90.

3. Heuerding A., Seyfried M., Zimmermann H., ” Effi-
cient Loop-Check for Backward Proof Search in Some
Non-classical Propositional Logics”, in P. Miglioli at al.
(eds.), Proceedings of the 5th International Workshop
on Tableaux, Italy, 1996, pp. 210-225.

4. Howe J.M., ” Proof Search Issues in Some non-Classical
Logics”, PhD thesis, School of Mathematical and Com-
putational Sciences, University of St Andrews, 1998.

5. Kopylov A., ” Decidability of Linear Affine Logic”, Pro-
ceedings of the Tenth Annual IEEE Symposium on Logic
in Computer Science 496-504, San Diego, 1995.

6. Lutovac, T., Harland J., ” Issues in the Analysis of proof
search Strategies in Sequential Presentations of Logics”,
IJCAR’04 Workshop on Strategies in Automated Deduc-
tion, Electronic Notes in Theoretical Computer Science,
125(2), 2005, pp. 115–147.

7. Lutovac T., ” Issues in Managing Redundancies in Proof
Search”, Phd Thesis, School of Computer Science and
Information Technology, Science, Engineering and Tech-
nology Portfolio, RMIT University, Australia, 2005.

8. Lutovac T., Harland J., ” A Redundancy Analysis of Se-
quent Proofs”, International Conference on Automated
Reasoning with Analytic Tableaux and Related Meth-
ods (TABLEAUX 2005),Germany 2005, LNAI 3702,
Springer-Verlag, 2005, pp. 76-90.

9. Lutovac T., Harland J., ” Detecting Loops During Proof
Search in Propositional Affine Logic”, Journal of Logic
and Computation, Volume 16, Number 1, 2006, pp. 61-
133.

10. Marriot K., Stuckey P., ” Programming with Con-
straints”, MIT Press, 1998.

11. Miller D., ” Forum: A multiple-conclusion specification-
logic”, Theoretical Computer Science 165(1), 1996, pp.
201-232.

12. Polakov J., ” Linearity Constraints as Bounded Intervals
in Linear Logic Programming”, in D, Galmiche,(eds.),
LICS’04 Workshop on Logic for Resources, Process and
Programs (LRPP), 2004, pp. 173-182.

13. Pym D., Harland J., ” A Uniform Proof-theoretic In-
vestigation of Linear Logic Programming”, Journal of
Logic and Computation 4:2, 1994, pp. 175-207.

14. Schürmann C., ” Automating the Meta-Theory of De-
ductive Systems”, PhD thesis, Carnegie-Mellon Univer-
sity, 2000.

15. Tammet T., ” Proof Search Strategies in Linear Logic”,
Journal of Automated Reasoning 12, 1994, pp. 273-304.

16. Wallen L., ” Automated Proof Search in Non-classical
Logic”, MIT Press, 1990.

20

